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ABSTRACT

Previous compressive sensing papers have considered the ex-
ample of recovering an image with sparse gradient from a sur-
prisingly small number of samples of its Fourier transform.
The samples were taken along radial lines, this being equiv-
alent to a tomographic reconstruction problem. The theory
of compressive sensing, however, considers random sampling
instead. We perform numerical experiments to compare the
two approaches, in terms of the number of samples necessary
for exact recovery, algorithmic performance, and robustness
to noise. We use a nonconvex approach, this having previ-
ously been shown to allow reconstruction with fewer mea-
surements and greater robustness to noise, as confirmed by
our results here.

Index Terms— Image reconstruction, compressive sens-
ing, nonconvex optimization.

1. INTRODUCTION

Results of Candès, Romberg, and Tao [1] and Donoho [2]
demonstrated that sparse images can be reconstructed from
fewer linear measurements than previously thought possible.
The family of results, algorithms, and applications that have
resulted is known as compressive sensing (among other re-
lated terms). The results, originally proved in the context of
Fourier transform sampling, apply not only to images that
have relatively few nonzero pixels, but those that are sparse
with respect to some basis. The approach is to solve the fol-
lowing convex optimization problem:

min
u
‖Ψu‖1, subject to Φx = b. (1)

Here, x is an image, treated as a vector in RN , where N is
the number of pixels; Ψ is a change-of-basis matrix, ideally
such that Ψx is sparse; Φ is the measurement or sampling op-
erator, represented as an M × N matrix; and b = Φx is the
M -dimensional vector of linear samples of x. Then, provided
Φ and Ψ are sufficiently incoherent (roughly that rows of Φ
can’t be sparsely expressed in terms of columns of Ψ, and
vice versa; see [3]), the solution to (1) will be exactly x, even
when M is much smaller than N . For example, if Φ consists

of randomly-chosen entries (from any of several known distri-
butions), or measures randomly selected entries of the Fourier
transform, then (1) recovers x exactly with high probability,
provided

M ≥ CK log(N/K) (2)

for some constant C, where K is the image sparsity ‖Ψx‖0.
Numerical results in [4] showed that one can recover x

from fewer linear measurements by replacing the `1 norm in
(1) with the `p quasi-norm, where 0 < p < 1:

min
u
‖Ψu‖p, subject to Φx = b. (3)

This gives a nonconvex optimization problem, but one that in
practice appears to be solvable using simple algorithms [4, 5].
Theoretical results [6] show for the case of Gaussian measure-
ments that (2) then generalizes to

M ≥ C1(p)K + pC2(p) log(N/K), (4)

where C1(p) and C2(p) decrease as p approaches zero. Thus
the dependence of the sufficient number of measurements M
on the number of pixels N vanishes as p → 0.

Also considered in [1] is the case of images having a
sparse gradient. This doesn’t quite fit into the above frame-
work, as one must consider either the vector-valued image
∇x, or the scalar-valued but nonlinear function |∇x|. The
assumption that x at least be well-approximated by an image
with sparse gradient has been used in medical contexts [7],
is useful in nondestructive evaluation of parts of piecewise-
constant density (apart from defects), and can even be re-
garded as the reason for the success of total-variation im-
age restoration [8]. In the case of partial Fourier measure-
ments, the condition (2) on the number of random Fourier
samples was shown in [1] to suffice with high probability
for exact recovery of images having gradient sparsity at most
K. This was demonstrated with the example of the Shepp-
Logan phantom, a common test image from the medical imag-
ing field. By sampling the Fourier transform along 22 radial
lines, obtaining 5481 complex measurements b = Φx of the
256 × 256 phantom x, the phantom is recovered exactly by
solving

min
u
‖∇u‖p, subject to Φx = b (5)



with p = 1. In [4], sampling along 18 radial lines (4505 sam-
ples) was shown to suffice for p = 1, but using p = 1/2 re-
duces the necessary number of lines to 10 (or 2521 measure-
ments, less than 4% of the total Fourier transform). Using
a nonconvex problem reduces the number of measurements
needed by 44%. The problem (5) was solved using a simple
gradient descent algorithm.

The reason for sampling the Fourier transform along ra-
dial lines is that it makes the example equivalent (up to dis-
cretization issues) to a tomographic reconstruction problem,
such as typically encountered in X-ray CT imaging. By the
Fourier slice theorem, a line of samples of the 2-D Fourier
transform of an image u is the same as the 1-D Fourier trans-
form of the “mass projection” of u perpendicular to that line
(i.e., a slice of the Radon transform of u). Thus, sampling the
Fourier transform along L radial lines is tantamount to having
L X-ray images from which to reconstruct x. (This is equally
true for the more useful case of 2-D X-rays of a 3-D object.)

This raises a question. Is it better to sample along radial
lines, as in X-ray tomography, or to sample randomly, as in
the Candès-Romberg-Tao theorem? On the one hand, in the
context of compressive sensing, random sampling is a con-
venient device for ensuring that the measurements are (very
likely to be) sufficiently incoherent. The probabilistic guaran-
tees do not apply to structured sampling. On the other hand,
it is entirely plausible that “X-ray sampling” might confer a
tomographic benefit, and perform better than suggested by
compressive sensing theory.

Below we present the initial results of numerical experi-
ments addressing this question from three perspectives. The
primary consideration will be a comparison of how many sam-
ples are required to successfully recover a sparse-gradient im-
age with each sampling method. We will also compare the
performance of a particular algorithm for the two approaches,
and examine the effect of noise. General results in [9] for the
convex (p = 1) case and [10] for the nonconvex (p < 1) case
show generally that the ability of (1) and (3) to recover sparse
signals is robust to approximation, whether in the sense of
noise in the measurements b, or in the signal x being only ap-
proximately sparse. This does not address the issue of which
form of Fourier sampling is more robust.

2. ALGORITHM

The gradient descent algorithm used in [4] converges slowly.
The iteratively-reweighted least squares (IRLS) approach used
in [5, 6] for solving (3) (with Ψ being the identity) was suc-
cessful and converged rapidly, so we modify it for solving (5).
The approach does not admit a gradient in the objective, but
it does if we use the following unconstrained approximation:

min
u

α‖∇u‖p
p + ‖Φu− b‖2

2, (6)

with α being a parameter. This is now identical to the non-
convex extension of total-variation regularization considered

in [11]. The algorithm used there was a straightforward ex-
tension of the fixed-point method of Vogel and Oman [12].
Consider the Euler-Lagrange equation of (6):

0 = −α∇ ·
(
|∇u|p−2∇u

)
+ ΦT (Φu− b), (7)

where for convenience we have ignored factors of 1/p and
1/2. We solve (7) iteratively, by substituting the previous it-
erate un−1 into |∇u|, then letting un be the solution of the
resulting linear equation:(

−α∇ ·
(
|∇un−1|p−2∇

)
+ ΦT Φ

)
un = ΦT b. (8)

Note that this is equivalent to the IRLS approach. In [5], it
was shown that a crucial aspect of the success of IRLS is the
mollification of |∇u|: we replace|∇un−1| by

√
|∇un−1|2 + ε,

initially for a relatively large ε = 1, then successively decre-
ment by factors of 10 after convergence. In [5], this strategy
drastically improved the ability of an IRLS algorithm for solv-
ing (3) to recover sparse signals, in comparison with previous
results for the FOCUSS algorithm [13]. Here, in addition to
decrementing ε we simultaneously decrement α by factors of
10, which causes the solution of (6) to approach that of (5).
This process is repeated until every pixel value of u is within
10−14 of the corresponding value of x, unless the procedure
fails, in which case the process is continued until no further
convergence is observed.

3. EXPERIMENTS

We begin with x being the 128× 128 Shepp-Logan phantom
(Fig. 1). We compare the performance of the algorithm, using
p = 1/2, as smaller values of p do not significantly decrease
the number of measurements required [5, 6], while decreasing
the robustness to non-sparsity in x [10]. The smallest number
of radial line samples required for exact reconstruction is 10,
or 1241 total samples. For random samples, we find 721 to be
sufficient, and 711 not. Thus, random sampling requires many
fewer samples. In Fig. 4(a), we see that the radial sampling
results in convergence to x in many fewer iterations. How-
ever, 1241 random samples gives near convergence sooner, as
measured by the sup-norm error being less than 1/128, as this
results in the MATLAB output image being identical to x.

We also consider the effect of noise. It is not clear how
best to add noise in the Fourier domain, so we add Gaussian
noise to x instead. This gives a reasonable corruption of the
Fourier measurements, and also addresses robustness to non-
sparsity. We add noise of mean zero and standard deviation
0.01 (x being [0, 1]-valued), for an SNR of 26.5 dB. In Figs. 1
and 2, we see the results for the sampling described above, as
well as for 18 radial lines, being the fewest required for recon-
struction in the noiseless case when p = 1, and the same num-
ber (2201) of random samples. Radial sampling and a similar
number of random samples give a similar SNR, but with ran-
dom sampling the finer structures are preserved a little better.



(a) Shepp-Logan phan-
tom, ‖∇x‖0 = 1081

(b) Noise added, SNR =
26.5 dB

(c) 10 radial lines, 1241
samples

(d) SNR = 25.9 dB

(e) 1241 random samples (f) SNR = 28.7 dB (g) 721 random samples (h) SNR = 16.7 dB

Fig. 1. Radial and random sampling of the Fourier transform compared for the Shepp-Logan phantom and a noisy version of it.
Radial sampling does not do quite as well with the noisy phantom as the same number of random samples. Many fewer random
samples are needed for the noiseless phantom, but gives much poorer results with the noisy phantom.

With a smaller number of random samples, though sufficient
in the noiseless case, with noise the results are poorer. Also,
using p = 1 gives much poorer results than p = 1/2, as can
be expected from the fact that more measurements are needed
for p = 1 reconstruction to be successful in the noiseless case.

We also consider an example of a very simple object, to
see if the tomographic approach can be successful with as few
samples as random sampling. We use an ellipse, for which 3
X-ray projections are known to be sufficient for reconstruc-
tion to be possible [14]. Results are in Figs. 3 and 4(b). We
find 3 radial lines to be enough for near reconstruction, the
discrepancy likely due to the coarse pixellation of the ellipse.
The same number (253) of random samples is woefully insuf-
ficient. Samples along 4 radial lines are enough for perfect
reconstruction, with convergence being much faster than the
same number (505) of random samples. 310 random samples
suffice for reconstruction, fewer than required by radial sam-
pling for this image, but likely not for a true ellipse.
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